quantum gravity model
quantum QED model
2011-2015 papers
2011-2015 homepage texts
who I am
literature I
literature II

Literature II


Ahner J. F., Some spectral properties of an integral operator in potential theory

Ahner J., On the eigenvalues of the electrostatic integral operator.pdf

Amini S., On Boundary Integral Operators for the Laplace and the Helmholtz Equations and Their Discretizations

Bell J. L., Hermann Weyl on intuition and the continuum

Berry M.V., Keating J.P., H=xp and the Riemann Zeros


Biswas I., Subhashis N., Jacobians of Riemann Surfaces and the Sobolev Space H(1 2) on the circle

Braun K., Interior Estimates of the Ritz Method for Pseudo-Differential Equations

Bray H., Black Holes, Minimal Surfaces, and Differential Geometry

Carroll R., Gravity and the quantum potential

Dickinson D., On Lommel and Bessel Polynomials

Donaldson S. K., Lectures on Lie Groups and Geometry

Elizalde E., Spectral Zeta Function for Spherical Aharonow-Bohm Quantum Bags

Einstein A., Ueber die formale Beziehung des Riemann Kruemmungstensor zu den Feldgleichungen der Gravitation

Fefferman C., PhonD. H., Symplectic geometry and positivity of pseudo-diferential Operators

Goldshtein,Troyanov M., On the naturality of the exterior differential

Halliwell J. J., Introductory Lectures on Quantum Cosmology

Hamel G., Ueber ein Prinzip der Befreiung von Langrange

Hawking S., Penrose R., On Gravitational Collapse and Cosmology

Heidegger M.,The Origin of the Work of Art

Higgs P. W., Spontaneous Symmetry Breakdown without Massless Bosons

G. Hooft Introduction to String Theory.pdf

Kolb E., Wolfram S., Spontaneous symmetry breaking and the expansion rate of the early universe

Kneser A., Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik

Kress R., Linear Integral Equations

Lie S., Geometrie der Berührungstransformationen. Dargestell von Sophus Lie und Georg Scheffers. 1. Band (1896)

Liebmann H., Engel F., Die Berührungstransformationen, Geschichte und Invariantentheorie, B. G. Teubner, Leipzig, 1914

Lifanov, I. K., Nenashev A. S., Generalized functions on Hilbert spaces, singular integral equations, and problems of aerodynamics and electrodynamics (2)

Long J., The Calderon projector pseudo-differential methods in boundary value Problem

Luxemburg W. A. J., What is Nonstandard Analysis

Nag S., Sullivan D., Teichmüller theory and the universal period mapping via quantum calculus and the H(1 2) space on the circle

Nottale I., Fractale Space-Time, Non-Differentiable Geometry and Scale Relativity

Penrose R., On The Nature Of Quantum Geometry

Penrose R., Gravitational collapse and space-time singularities

Riemann B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe

Robinson A., The metaphysics of calculus I

Robinson A., The metaphysics of calculus II

Scholz E., Hermann Weyl s Purely Infinitesimal Geometry

Scholz E., Riemanns fruehe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der Geometrie

Scholz E., Weyl geometry in late 20th century physics

Scholz E., Weyl quantum mechanics

Scholz E., Riemann s Vision of a New Approach to Geometry

Scholz E., The Concept of Manifolds, 1850-1950

Scholz E., Weyl entering the new quantum mechanics discourse

Scholz E., Weyl quantum mechanics

Schroedinger E.,What-is-Life

Schroedinger E., About Heisenberg Uncertainty Relation

Sedletskii A. M., Asymptotics of the Zeros of Degenerate Hypergeometric Functions

Stein E., Conjugate harmonic functions in several variables

Treder H.-J., Singularitäten in der Allgemeinen Relativitätstheorie

Trefftz E., Das statische Gravitationsfeld zweier Massenpunkte in der Einsteinschen Theorie

Weyl H., Das Kontinuum, Eine kritische Untersuchung ueber die Grundlagen der Analysis

Weyl H., Das gruppentheoretische Fundament der Tensorrechnung

Weyl H., Purely infinitesimal geometry (excerpt)

Weyl H., Purely infinitesimal geometry (excerpt)

Weyl H., Singuläre Integralgleichungen

Weyl H., Space, Time, Matter, introduction

Weyl H., Reine Infinitesimalgeometrie